skip to main content


Search for: All records

Creators/Authors contains: "Wijeratne, Asela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host–symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite–host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host–symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.]

     
    more » « less
  2. Abstract

    Researchers often examine symbiont host specificity as a species‐level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist–generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population‐level processes, stating that single‐host symbionts (specialists) exhibit stronger population genetic structure than multi‐host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities,Amerodectes protonotaria(a host specialist ofProtonotaria citrea) andA. ischyros(a host generalist of 17 parulid species). We used a pooled‐sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission – during the nonbreeding season of migratory hosts – as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.

     
    more » « less
  3. With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them. 
    more » « less